This packet explains the detailed instructions, specifications, and other notes needed during installation and set-up for the AME 59-64 Impala GT Sport chassis.
Contents
Wheels & Tires ... 3
 59-60 ... 3
 61-64 ... 3
Axle Housings ... 4
Buick-Olds-Pontiac-El Camino-Wagon Fitment .. 4
Wheelbase .. 4
Springs/Shocks/Sway Bar/Suspension Links ... 4
 Coilover Springs .. 4
 Coilover Shocks .. 5
 Coilover Suspension Link Arrangement .. 5
 Coilover Sway Bars .. 5
Air Suspension Springs .. 5
Air Suspension Shocks .. 5
Air Suspension Link Arrangement- ... 6
Air Suspension Sway Bars ... 6
Engine Placement ... 6
Alignment Specifications.. 6
 Street Alignment Coilover .. 6
 Street Alignment Air .. 6
Autocross Alignment ... 6
Track Alignment .. 6
Body Mounting .. 7
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>61-64 Fuel Tank</td>
<td>7</td>
</tr>
<tr>
<td>Required Body Modifications</td>
<td>7</td>
</tr>
<tr>
<td>Rear Footwell Trim</td>
<td>7</td>
</tr>
<tr>
<td>Under Rear Seat Trim</td>
<td>11</td>
</tr>
<tr>
<td>Rear Driveline Clearance Trim</td>
<td>12</td>
</tr>
<tr>
<td>New Fabricated Panels</td>
<td>13</td>
</tr>
<tr>
<td>2-Piece Driveline Instructions</td>
<td>14</td>
</tr>
<tr>
<td>Overview</td>
<td>14</td>
</tr>
<tr>
<td>Driveline Ordering Information:</td>
<td>15</td>
</tr>
<tr>
<td>Measuring for a 2-Piece Driveline:</td>
<td>16</td>
</tr>
<tr>
<td>Installation of 2-Piece Driveline:</td>
<td>18</td>
</tr>
<tr>
<td>Setting Pinion Angle:</td>
<td>18</td>
</tr>
</tbody>
</table>
Wheels & Tires

59-60 - The early years have the widest bulge width in the rear. They are nearly 2” wider overall in the inner wheel house. The stock rear wheels/tires will fit with the standard 55” housing spec. This housing places the wheel mounting width in the factory location at 60-3/8”. The factory front hub track width is 60-1/2”. The front hub track width is 1” wider than stock with big brakes at 61-1/2”. With small brakes, the front hub track is the same as stock and stock wheels will fit.

Specifics:

- Rear inner bulge width must be no narrower than 48-1/2” to fit in a factory inner wheel house.
- When using 12” wheels, the body mount located at the rear axle centerline may have to be removed. Since 4 body mounts were added to the chassis, no additional body mounts are needed when removing this body mount. DO NOT remove this mount unless it is absolutely necessary.
- Outer bulge should be no more than 74” for 59-60 cars if the inner quarter flanges are not trimmed.
- Outer front bulge dimensions are based on recommendations from wheel manufacturers and our own past data with these cars. AME house spec is approximate and there may be more room to go wider. Customers are ALWAYS STRONGLY ADVISED to fit the chassis and check wheel fitment BEFORE ordering wheels.
- Maximum tire width to fit in the factory rear tubs is 305mm for 59-60 cars

61-64 - The later years have a narrower bulge width in the rear and AME wheel specs will differ from the 59-60. However, the 55” housing will put the rear wheels/tires in the factory width at 60-3/8”, therefore stock wheels/tires will fit. The front wheel specs will be the same from 59-64. The factory front hub track width is 60-1/2”. The front hub track width is 1” wider than stock with big brakes at 61-1/2”. With small brakes, the front hub track is the same as stock and stock wheels will fit.

Specifics:

- Rear inner bulge width must be no narrower than 48-1/2” to fit in a factory inner wheel house.
- When using 12” wheels, mini-tubs are required and the body mount located at the rear axle centerline may have to be removed. Since 4 body mounts were added to the chassis, no additional body mounts are needed when removing this body mount. DO NOT remove this mount unless it is absolutely necessary.
- Outer bulge should be no more than 72” for 61-64 cars if the inner quarter flanges are not trimmed.
• Outer front bulge dimensions are based on recommendations from wheel manufacturers and our own past data with these cars. AME house spec is approximate and there may be more room to go wider. Customers are ALWAYS STRONGLY ADVISED to fit the chassis and check wheel fitment BEFORE ordering wheels.
• Maximum tire width to fit in the factory rear tubs is 295mm for 61-64 cars.

Axle Housings
The AME standard housing specification is designed to match the factory wheel mounting surface width. AME standard housing width is 55”, and the wheel mount surface width is 60-3/8” for all years and all models. The 53” housing can be used for a larger “dish” look in the rear wheels. Both housings use Torino housing ends and a centered pinion. Both housings also use a small web center but a big web or fabricated 9” can be supported in high horsepower situations.

Buick-Olds-Pontiac-El Camino-Wagon Fitment
The interchange manual states this frame will fit all Chevrolet cars from 59-64 including: Impala, Bel Air, Biscayne, El Camino, and all wagons with a wheelbase of 119”. However, this frame will NOT fit any Buick, Oldsmobile, or Pontiac models. Most of these models have a different wheelbase dimension.

Note: This frame will also not fit any 58 Chevrolet cars, El Camino, or any wagons. These are completely different chassis and also have a different wheelbase dimension.

Wheelbase
The AME 59-64 GT Sport Chassis was designed using the factory wheelbase dimension of 119”. Due to a lack of a clear aesthetic need to adjust the factory wheelbase and with endless amounts of subjectivity in where the wheels should be placed, the chassis wheelbase matches the factory dimension.

Springs/Shocks/Sway Bar/Suspension Links

Coilover Springs-
All big block cars should have 650 lb/in front springs and small block cars should have 550 lb/in springs. All cars with solid rear suspensions should have 250 lb/in springs in the rear, but if a more aggressive set-up is wanted a 300 lb/in spring will work better. All cars with AME Multilink IRS should have 500 lb/in springs.
Coilover Shocks- All models use 5205 series front shocks for both JRI and Strange shocks using bearings on both ends. For the rear, all models use 5205PF Strange shocks and 5205PR JRI shocks. Both types use polyurethane bushings on both ends, except for an IRS version which will use bearing mounts at either end. At designed ride height, the centerline of the housing tube is 7-1/8” above the base of the frame. Rear shock installed height (eye-to-eye) is 13” and the front shock installed height is 13-3/8”.

Coilover Suspension Link Arrangement- The rear shock stud is designed to use the middle hole in the housing for all frames. The upper and lower holes can be used to change the ride height to satisfy the customer’s desired look. In the center hole, the lower link uses the upper hole on the frame bracket, and the upper link uses the upper hole on the frame bracket. If the car wants to be raised, the shock stud should be moved to the top hole on the housing. At this raised height, the lower link uses the lower hole on the frame bracket, and the upper link uses the lower hole on the frame bracket.

Coilover Sway Bars- Both the front and rear sway bars will be adjustable. Front bar size is 1-1/8” diameter by 0.156” wall thickness. Front suspension is designed to use the middle hole in the sway bar. Rear bar size is a solid .75” diameter bar. The rear suspension is designed to use the softest setting in the bar, with the ability to go stiffer for a more aggressive set-up.

Air Suspension Springs- All models, no matter the engine/transmission set-up, will use the same Slam Specialties AirSS6 bags in the front and Firestone 9011 bags in the rear. The front bags are rated up to 250psi operating pressure over the 100psi Firestone bags. Even though operating pressures will be significantly lower (approximately 85-95psi at ride height), a higher rating will decrease the chance of bag bursts on the road. At ride height, the rear air spring will have a length of 10-1/4” and the front spring will have a length of 5-1/4”. If using the AccuAir programmable ride height setup (AME PN: AIRSSIMP01) and using the mounting locations provided in the chassis for the AccuAir ride height sensors, the “2” setting would be programmed at the spring heights listed above. *It is imperative to set the ride height at these specific spring heights to insure correct suspension geometry to provide the optimal ride quality, cornering capability, tire wear, ground clearance, and steering characteristics designed into every Art Morrison chassis.*

Air Suspension Shocks- Strange smooth body shocks with AME designed specific valving will be used on all four corners of every Impala GT Sport Air chassis. The front will use AIRS5204 Strange shocks with bearing mounts on either end. Two mis-alignment bushings will be required to mount the shocks to the frame. The rear will use AIRS5206 Strange shocks with a bearing mount on the frame side and a polyurethane mount on the housing side. Two mis-alignment bushings will be required to mount the shocks to the frame.
Air Suspension Link Arrangement- All air frames use the same link arrangement. The lower link uses the lower hole on the frame bracket, and the upper link uses the upper hole on the frame bracket.

Air Suspension Sway Bars- The air suspension chassis will utilize a different set of sway bars both front and rear. The front will be a non-adjustable 1” diameter solid sway bar. The rear will be an adjustable 5/8” diameter solid bar and mounted to the rear of the housing. The rear sway bar will have to be installed before installing the rear air springs. Recommended starting point for adjustment would be the stiffest setting. (Hole closest to the housing)

Engine Placement
The motor mount location was designed to give the maximum amount of hood clearance, and to fit AME’s Sport IFS suspension and steering components. Engine placement differs slightly from stock. For the 59-60 chassis, the new engine location is 1/4” forward and 1-5/8” higher than stock. For the 61-64 chassis, the new engine location is 3/8” forward and 3/8” higher than stock. All Impala GT Sport chassis have the same engine location. It is highly recommended to measure for hood clearance using provided engine valley heights to insure induction set-up clearance. Especially in small block/big block carbureted applications.

Alignment Specifications

<table>
<thead>
<tr>
<th>Street Alignment Coilover</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Toe</td>
<td>1/32” to 1/16” in</td>
</tr>
<tr>
<td>Camber</td>
<td>-0.5°</td>
</tr>
<tr>
<td>Caster</td>
<td>+5.5° to +6.5°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Street Alignment Air</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Toe</td>
<td>1/32” to 1/16”</td>
</tr>
<tr>
<td>Camber</td>
<td>0.0° to -.5°</td>
</tr>
<tr>
<td>Caster</td>
<td>+5.5°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autocross Alignment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Toe</td>
<td>1/16” out</td>
</tr>
<tr>
<td>Camber</td>
<td>-1.5° (consult tire manufacturer)</td>
</tr>
<tr>
<td>Caster</td>
<td>+5°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Track Alignment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Toe</td>
<td>0” to 1/32” in</td>
</tr>
<tr>
<td>Camber</td>
<td>-1.5° (consult tire manufacturer)</td>
</tr>
<tr>
<td>Caster</td>
<td>+5.5°</td>
</tr>
</tbody>
</table>
Body Mounting
The chassis is designed to use the stock body mounts. The 59-60 models use the 59 Impala hardtop mounts and the 61-64 models use the 61-64 convertible mounts. However, the Impala GT Sport chassis includes 2 additional body mounts (per side) that were designed for added body stiffness. Therefore, AME offers body mount and hardware kits with the additional mounts to work with the GT Sport chassis. Aftermarket urethane bushings designed for 59-64 convertibles should work as well for all year Impala GT Sport Chassis. Body modifications will be required and are laid out in the sections below. Most transmissions should fit in the tunnel; however, some transmissions may require modification for fitment, especially the T56 and 4L80E series transmissions.

61-64 Fuel Tank
The fuel tank is located directly behind the rear axle housing, and creates a packaging challenge for the upgraded Triangulated 4-Bar Suspension with coilover shocks and inside-frame exhaust routing. To fit the factory fuel tank within the frame rails, the flanges on the outside of the tank may have to be folded in slightly. Be aware that aftermarket tanks could differ dimensionally from the factory tanks, and the flanges may have to be folded more or less for fitment. The fuel tank WILL NOT fit with the Air Spring Triangulated 4-Bar Suspension or the Multilink Independent Rear Suspension.

Required Body Modifications
All 59-64 GT Sport chassis will require minor body modifications for fitment. All trimmed areas were specifically chosen to minimize the amount of trimming and, when complete, would seemingly appear to have a factory appearance.

Rear Footwell Trim- The inside of the rear seat footwell will have to be trimmed to fit the 3”x4” Main Rails in the body. Figure 1 shows the taped off portion of the floorpan that will have to be trimmed out.
The most accurate way of taping off the trimmed area is to first extensively clean the area of the floor pan the tape will be applied. The body shown in Figure 1 has been sand blasted and epoxy primer has been applied to ensure a clean, visible area. Then, use shims on the lift or jack stands that the body rests on to level the rocker to the ground. This will make future measurements easier to make since the frame is designed to be parallel to the rocker panel. Once this is done, align the chassis under the body as accurate as possible through the body mount locations. Lower the body just enough to touch the frame at the footwell location. For the fore-aft trim line, use a vertical laser line or a straight edge to mark a trim line on the outside of each 3”x4” main rails. Place the inside edge of tape on the line to trim. The width of the trim should be approximately 18-1/4” apart with the added ¼” clearance on each side. Figure 2 below shows the front area of each trim area. The trim will have to go through 2 structural body ribs shown below. To keep adequate body structure this is usually something to avoid, however, the chassis includes an added body mount on each side to support the trimmed ribs.
Figure 2: Front Portion of Footwell Trim Area (Hopefully start with better floors than we did!)

From the bottom of the footwell, the approximate height of the trim is 4”. The base of the 3”x4” rail will sit nearly flush with the base of the footwell. Mark the height of the approximate trim from the footwell base. Then use a level or a laser to scribe a line across the footwell level to the rocker of the car. Since the car is level with the ground, measurements can be taken from the ground to ensure the trim line is level to the rocker of the car. Again, apply tape along the trim line until your upper and lower tape lines intersect. This is your initial trim section. When trimming, make sure to leave approximately ¼” per side of the trim line to leave a slight clearance for the frame rails sit in. Use a cut off wheel or plasma cutter to cut out the trim section. Figures 3 and 4 show what the initial trim should look like.

Note: If using a 1-piece driveline, the driveline tunnel between the two trimmed areas above will have to be cut and raised to accommodate the lowered ride height, and especially with the air suspension configuration.
Figure 3: Rear View Facing Forward of Initial Trim

Figure 4: Detail View of Right Hand Footwell Trim

Figure 5 below shows the frame rail tucked inside of the footwell trim.
Under Rear Seat Trim - For the 59-60 models ONLY, there is another trim required. Located just behind the rear footwell, there is a slight dip in the sheet metal under the rear seat. This needs to be removed to get the body as low as possible to frame. Figure 6 shows this pocket from beneath the car. This pocket may not be included in the El Camino models.

Figure 5: Frame Rail Tucked into Trimmed Area

Figure 6: Rear View Facing Forward of the Rear Seat Pocket
The rear crossmember and front portion of the rear rails fit inside of this trimmed pocket. Figure 7 shows how the frame fits in this pocket.

![Figure 7: Interior View of Rear Seat Pocket Trim](image)

With the front sheet metal out, the body can be lowered so that it barely touches the frame at rear seat pocket that needs to be trimmed. Mark the area to be trimmed using the same procedures as the earlier trim either using a straight edge or laser. From fore to aft, the trim goes from in front of the rear crossmember to right in front of the rear brace in the body. From side to side the trim goes from outside the rear rail to where the sheet metal rises up as you go toward the center of the car. Make sure there is a minimum $\frac{1}{4}''$ of clearance on either side of the frame and the sheet metal.

After this piece of sheet metal is cleared away, the body will sit on the frame’s body mounts.

Tip: When trimming, start with a tight fit to the frame with the minimum clearance, and then if additional trimming is needed to fit, more can be ground down or cut off.

Rear Driveline Clearance Trim - The factory chassis utilizes a 2-piece driveline which enables the floor pan to form tightly around the stock frame. The GT Sport Impala chassis gives the customer an option to utilize an upgraded 2-piece driveline. Figure 8 shows the trim made for rear driveline clearance with the upgraded 2-piece driveline set-up at the lowered stance ride height. This shows the minimum amount of trimming for driveline clearance for the 59-60 models. 61-64 may not need to be trimmed for driveline clearance. If using a 1-piece driveline,
the entire driveline tunnel will have to be cut out and raised. See “2-piece Driveline Overview & Installation” section for more driveline information.

![Figure 8: 2-Piece Rear Driveline Trim Area](image)

New Fabricated Panels

Now the body should be able to lay on the frame’s body mounts with ample room for suspension and drivetrain to operate in their full potential. New sheet metal will have to be fabricated and welded in to shore up the trimmed floor pan. To begin, find shim material of a minimum of ¼” thick, and tape the material to the top of the frame at each trim location. The new sheet metal pieces can be formed over these shims to ensure adequate clearance. *Start by making each new piece of sheet metal with poster board material before using sheet metal.*

We cannot stress this enough because it will make the process a lot easier, cleaner, and less expensive.

Cut a large enough piece out of poster board to cover the area which you are working with. Make a break in the board just how you would with the sheet metal that will be used. Using scissors, trim away at the poster board until you get an adequate fit the floor. *Build and label a piece for each trim area. Left and Right trims may not be exactly symmetrical.*

The panel covering the drive line in the rear can be more difficult. Instead of starting with a flat piece, start with a rolled piece of sheet metal designed for driveshaft tunnels that can be purchased from a variety of automotive sheet metal manufacturers. The rest of the procedures shown here will apply.
Once you are satisfied with the templates, unfold them and transfer the flat patterns to the sheet metal. Leave about 1/16” to 1/8” excess so each piece will have room for minor adjustments when it is welded. Also, transfer where the poster board is broke so it can be lined up when forming the sheet metal. Cut out each pattern from the sheet metal using shears or band saw. De-bur all the edges to prevent cuts when working. Break each panel the same way as the poster board on the transferred lines. Panels may need to be ground or trimmed further for an adequate fitment.

TACK TACK TACK. Once all the panels are built to fit, start by tacking each piece into the floor going from one side of the piece to the other. This spreads out the heat to prevent the panels from warping. Tack each piece until there is only approximately 1” between tacks all the way around each piece. Then connect each tack with a small weld bead. Again, go from one side to the other to avoid warping. Once complete, the welds can be ground down and sealer applied for rust prevention.

2-Piece Driveline Instructions

Overview
When most people are sitting and talking in the garage while leaning on their classic Impala, Bel Air or El Camino and the topic of 2-piece drivelines comes up, you would usually hear the endless number of stories of the aches and pains of constantly working on or replacing them. In reality, the components used in 2-piece driveline set-ups have greatly improved since our classic cars were designed in the 50’s and 60’s. We have also experienced in longer wheelbase cars that the use of a long, 1-piece driveline causes vibration by reaching its critical speed (the speed at which the natural frequency is reached.) Using a modern 2-piece driveline significantly raises this critical speed to a level outside of typical daily driving conditions. Most modern day coupes, sedans, and especially trucks are successfully using 2 drivelines even in higher horsepower applications. Some of these benefits include:

- Greatly reduces vibration and harmonics by increasing the critical driveshaft speed where vibrations can occur
- Increases the amount of clearance to the factory floor pan making it possible to get the great stance without the intensive floor modifications that would be required with a 1-piece driveshaft
- Larger carrier bearing for strength and longevity to withstand the stresses that come with high horsepower applications
- Easy bolt-on bearing mount design for ease of installation
• The bearing cast in polyurethane makes a stiffer mount with the damping needed to reduce harmonics in the driveline in higher horsepower applications
• Center joint slip yoke creates a stress-free joint that accounts for suspension travel

Figure 9 below shows the major components in a 2-Piece driveline set-up including:

1. Yoke
2. Front Driveline (3” shown)
3. Carrier Bearing
4. AME Carrier Bearing Adjustable Billet Mount
5. Joint Slip Yoke
6. Rear Driveline (2.5” Shown)
7. U-Joint (3 Total)

Figure 9: 2-Piece Driveline Component Overview

Driveline Ordering Information:
This section will layout the carrier bearing assembly used with the 59-64 Impala GT Sport Chassis. The bearing we use is an upgraded replacement bearing for the 58-64 Chevrolet Cars and 58-72 Chevrolet and GMC trucks. The bearing consists of cast aluminum housing with a urethane cast centering bearing featuring a larger inner diameter for increased strength for today’s powertrains. We recommend this upgraded replacement bearing, but a factory bearing can be used as well. If using a stock replacement ensure it’s of high quality and uses 3/8” fasteners. Cheap replacement bearings may use metric fasteners and will not fit with the Adjustable Carrier Bearing Mount. Either way, the assembly is completely balanced together with the bearing to ensure a truly balanced assembly. The complete assembly is shown in Figure 9. An AME Carrier Bearing Adjustable Billet Mount will be required to mount the bearing to the frame. This mount rotates to accommodate virtually any engine/transmission combination. Figure 10 shows an exploded view of AME’s Carrier Bearing Adjustable Mount.
Figure 10: Carrier Bearing Mount Exploded View

Measuring for a 2-Piece Driveline:
Measuring for a 2-piece driveline is essentially the same as a 1-piece, except you will be providing two major driveline lengths instead of one. Many driveline manufacturers, like Inland Empire Driveline, include 2-Piece driveline ordering forms to assist in the process. The basic procedures to measure are listed below, but check with your driveline manufacturer before measuring to see precisely what they need to build your driveline.

1. Completely assemble the necessary components to measure the driveline including engine, transmission, rear suspension links, rear end housing or IRS cradle. **NOTE: do not install the coilover shocks while measuring for a driveline unless the car is completely done and the vehicle is at its finished weight.**
2. Set the rear suspension at RIDE HEIGHT by either jacking up the rear end housing or using shock jigs to make sure the distance between the shock mount holes matches the specified installed eye-to-eye length of the shock. Refer to your particular chassis notes or call the AME Tech Department for the shock installed height dimension.
3. In AME’s Carrier Bearing Adjustable Mount Bracket, there are 2 positions to install the Carrier Bearing Adjustable Mount. The *forward* bolt pattern is for IRS equipped vehicles, and the *rearward* pattern is for solid rear axle equipped vehicles. Figure 11 illustrates both mounting locations.

![Figure 11: Carrier Bearing Mounting Locations for IRS & Solid Axle Applications.](image)

4. Once the correct pattern is chosen, the centerline of the bearing is located on the fore-aft centerline between the mounting holes. Using the dimensions in Figure 12; scribe the centerline of the bearing on the bracket. This will be used as the centerline of the carrier bearing.

![Figure 12: Carrier Bearing Centerline Location (Solid Rear Axle Position Shown)](image)

5. Put the edge of a combination square on the scribed line from step 4. Follow the instructions on the ordering form for the front driveline, rear driveline, and overall length if necessary. Also, make sure to fill out the transmission and rear differential information. The carrier bearing is **NOT** located in the factory location and re-designed to fit with the lowered stance compared to stock.
6. For any technical questions on size, yoke, material, or any other questions specific to the driveline please contact your preferred driveline professional. We recommend Inland Empire Driveline for all of your driveline needs.

Installation of 2-Piece Driveline:
Once you receive your 2-piece driveline, it is ready to test fit in the chassis. *(Apply anti-seize to all fasteners and refer to torque sheet provided)*

1. Bolt the Carrier Bearing Mount to the bottom of the bearing located on the driveline assembly using (2) 3/8”x1” NC socket head bolts.
2. Loosely bolt the AME Carrier Bearing Pivot Mount to the AME Carrier Bearing Pivot Housing using the (1) 3/8”x3” NC countersunk Bolt.
3. Loosely thread the (4) 5/16”x3/4” NC socket head bolts into the Carrier Bearing Pivot Mount. Leave them slightly loose so the bearing is able to move back and forth freely.
4. Slide the yoke onto the transmission output shaft and bolt the rear u-joint to the rear end differential pinion.
5. Using the play in the yoke, align the holes in the Frame Mount with the holes in the chassis bracket. Using (2) 3/8”x1” NC flange head bolts, apply a thin layer of Blue Loctite to the bolts and bolt the carrier bearing assembly to the frame.
6. Once the driveline is securely bolted in place, tighten the (4) 5/16”x3/4” bolts and (1) 3/8”x3” NC countersunk bolt in the mount assembly to secure the bearing mount to the frame mount.
7. Verify that the driveline has the correct offset from the transmission and that it rotates freely in the Carrier Bearing.

Setting Pinion Angle:
Setting pinion angle is slightly different for a 2-piece driveline than a 1-piece. The most accurate way to measure pinion angle is using a digital type protractor (AME part #:17171700), but a magnetic dial type would also work. Figure 13 gives an illustration of the angles being measured. First measure the angle of the front driveline in relation to the ground and should be pointing down from front to back. This is angle “A” in Figure 5. Now, set the pinion angle UP relative to the ground to the same angle as measured in angle “A”. This angle is shown as angle “B” in Figure 13. For example, if angle A is measured at 2 degrees down, the pinion should be set at 2 degrees up relative to the ground. (Angle B) This angle with be slightly different for different transmissions, but as long as angle A = angle B, any vibrations regarding pinion angle will be optimized. Pinion angle can be adjusted using the rod ends located on the upper and lower rear suspension links.
GROUND Angle "A" = Angle "B"

Figure 13: Pinion Angle Illustration
1961-1964 Chevrolet

- Engine Mount Related to Stock
 - AME 3/8" Lower than Stock
 - AME 3/8" Forward than Stock

Engine/Trans Angle 5.0°

1959-1960 Chevrolet

- Engine Mount Related to Stock
 - AME 1-5/8" Higher than Stock
 - AME 1/4" Forward than Stock

Engine/Trans Angle 5.0°

REFERENCING THE BASE OF ENGINE BLOCK VALLEY ON FACTORY ENGINE

59-64 SBC Engine Height Reference

Copyright 2012
1959-1960 Chevrolet

- Engine/Trans Angle 5.0°
- Engine Mount Related to Stock
 - AME 3/8" Lower than Stock
 - AME 3/8" Forward than Stock

1961-1964 Chevrolet

- Engine/Trans Angle 5.0°
- Engine Mount Related to Stock
 - AME 1-5/8" Higher than Stock
 - AME 1/4" Forward than Stock

REFERENCING THE BASE OF ENGINE BLOCK VALLEY ON FACTORY ENGINE

59-64 BBC Engine Height Reference
1961-1964 Chevrolet
- Engine Mount Related to Stock
 - AME 3/8" Lower than Stock
 - AME 3/8" Forward than Stock

1959-1960 Chevrolet
- Engine Mount Related to Stock
 - AME 1-5/8" Higher than Stock
 - AME 1/4" Forward than Stock

REFERENCING THE BASE OF ENGINE BLOCK VALLEY W/O VALLEY COVER ON FACTORY ENGINE

59-64 LS Engine Height Reference
SCALE: 1:9 SHEET 3 OF 3
1959-64 Impala Front Wheel Size and Offset Specs

Front Wheel Dimensions (15” diameter minimum)
With an unaltered wheel well the following wheel specifications are required:

<table>
<thead>
<tr>
<th>Wheel Kit</th>
<th>10” Rim</th>
<th>9” Rim</th>
<th>8” Rim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilwood 11”, 12.19”, & AME Brake Kit (60.5” Track)</td>
<td>6-1/2”</td>
<td>5-3/4”</td>
<td>4-3/4”</td>
</tr>
<tr>
<td>Wilwood 13” & 14” Brake Kits (61.5” Track)</td>
<td>7”</td>
<td>6-1/4”</td>
<td>5-1/4”</td>
</tr>
</tbody>
</table>

Note: Steering stops likely to be required on front wheels wider than 10”

Brake Clearance
Precautions must be taken to ensure the brake caliper will clear the rim’s interior diameter. Each brake kit is listed below and a minimum of 0.080” must be added to ensure adequate clearance.

<table>
<thead>
<tr>
<th>Brake Type</th>
<th>Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>AME</td>
<td>6.60”</td>
</tr>
<tr>
<td>Wilwood 12”</td>
<td>6.97”</td>
</tr>
<tr>
<td>Wilwood 13”</td>
<td>7.40”</td>
</tr>
<tr>
<td>Wilwood 14”</td>
<td>7.92”</td>
</tr>
<tr>
<td>Aerolite 14”</td>
<td>8.12”</td>
</tr>
</tbody>
</table>
1959-64 Chevrolet Rear Wheel Size and Offset Specs

Using Multilink IRS

Rear Wheel Dimensions (18” diameter minimum)
Using a 59-1/2” hub track, the following wheel specifications are required:

<table>
<thead>
<tr>
<th>59-60 Chevrolet’s</th>
<th>61-64 Chevrolet’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>12” Rim: 6.5” backspace (19” dia. min.)</td>
<td>12” Rim: 7.5” backspace (19” dia. min.)</td>
</tr>
<tr>
<td>11” Rim: 5” backspace</td>
<td>11” Rim: 5.75” backspace</td>
</tr>
<tr>
<td>10” Rim: 4.5” backspace</td>
<td>10” Rim: 5” backspace</td>
</tr>
</tbody>
</table>

Note: Fabricated deep tubs are typically required for wheels wider than 11” on 59-60 models and 10” on 61-64 models. Also, the body mount in this area may need to be deleted.

Brake Clearance
Due to the Camaro knuckle and hub assembly, precautions MUST be taken to ensure the wheel will clear the brake caliper. Unlike older brake systems, the outside face of the caliper is farther outboard than the wheel mating surface. Critical dimensions are listed below, and additional room must be added for clearance.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEM</td>
<td>¾”</td>
</tr>
<tr>
<td>SL4</td>
<td>13/16”</td>
</tr>
<tr>
<td>W4A</td>
<td>1-1/16”</td>
</tr>
</tbody>
</table>